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The attempt to refine theories of plates and shells was started in [1,2], 
and at the present time many papers are devoted to this problem. These 
papers usually use one of a number of assumptions. A survey of them is 
beyond the scope of this note. We mention only the papers in which a 
certain error is specified at the outset, for example, of the order of 
h4/L4 compared to unity (2h is the thickness and L is the transverse 
dimension of the plate) and the differential equations corresponding to 
this accuracy are obtained [3-61. Boundary conditions to within this 
error were obtained in [S]. 

In the author’s view [7-81 are of the greatest interest in regard to 
the methodology of formulating a theory, even though they cannot lay 
claim to consistency in the question of refinement. 

We present below a quite general method of formulating refined 
theories of plates and shells which goes back to Reissner’s work i71 for 
its ideas. It is based on a generalized variational principle of the non- 
linear theory of elasticity [9]. 

1. In [91 it was shown that the following assertion holds (the 
linearized form of the relation proved in the indicated reference is 
used here). 

Among all displacements, stresses, and strains only those actually 

occur that make the functional 

(1.1) 

have a stationary value. 
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Acre V is the volume of the body; Q Is the .,body force vector referred 
to a unit volume: II Is the displacement vector; I is the strain energy 
per unit volume: S is the boundary of the voluee V, rhereby S(P) is the 
portion of the surface on which the surface traction vector PtIj is pre- 
scribed and S(,) is the portion on which the displacement vector u(~) Is 
given; oik . are the contravariant components of the stress tensor in the 
reference frame xa( i =’ 1, 2, 3) with coordinate vectors ri; eik are the 
covariant components of the strain tensor; Vi(...) Is the symbol for co- 
variant differentiation with respect to the metric gik, gig = (ri xtrk); 
and II is the unit Interior normal vector to the surface S 

If the material follows a linear elastic law then 

2W = Atin cue,, 0.2) 

nhere A ikm are the components of the tensor of elastic constants. For an 
Isotropic body 

6 
A’gm* = (I+ p) (i -2p) WgUg”” + (i - 2P) g’?? (1.3) 

Here E is the modulus of elasticity and lo is the coefficient of trans- 
verse contraction. 

In the functional J the displacements P, the stresses u ik and the 

sttains s ik are allowed to vary Independently. It is assumed that 644 = 

6P(s) = 0. 

If the plate or shell is symmetrically constructed with respect to 
some mean surface c which is sufficiently smooth, and if the plate or 
shell has a bounding section Z, whose generators are normal to u, then 
the first variation of the functional J may be represented in the form . 

h 

&J= * ’ SI s (v$k + Qk) 6u, v- -z y- dz k + 
a -h 

D - ( P+k + ~+%a~+) buk+ da+ + 
a+ 

$- 1s (P_” -k a_ikni-) $-dL + 1s (P(Z) + a%,) 8u, dY,,,! + 
a_ %J) 

+ cs (Use’ - Uk) 65i”Yi dZ~,) + Ss i (5ik - Aikmnem,) 8&ik ~$ d’ ds ~ 

$! d --h 

(6 = da 11 g,, I!) 
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Here 2h is the thickness of the plate or shell, which In general Is 8 

function of points along the mean surf8ce 0; x3 = z is 8 coordinate 

reckoned along the normal to the q e8n surface; the signs (+) or (-) 

attached to 8 qusntlty indicate that the qu8ntlt.y is calculated either 

at z = h or z = - h; the surfaces s = h end I = - h are denoted by u+ 8nd 

u_, respect lvely; Z( pl Is the portion of the surface Z on which external 

loads are specified, Z(,) is the portion on which displacements are 

specified; v is the unit interior norm81 to the SUrfaCe z. The line of 

intersection of the surfaces u 8nd I we denote by C. Further, we shell 

easume that on the surface u there is a coordinate net za(a = 1. l),with 

coordinate vectors pa = ra L= ,,. The positive sense of the coordinate z 

will be along the direction of n , determined from the relationship 

mea0 = pa x ~0 

Here c + is the discrimlnant tensor on the surface q the nonvsnish- 

ing components of which are 

Qs =-cm=fi, Q = det II cop II , OaB = Pa ’ Pj3 

Here and in the sequel Qreelt indices of tensor character take on the 

values 1 and 2, while L&in indices of the s8me character take on the 

values 1. 2, 2. Remaining indices are enclosed in parentheses. 

We specify the displacements, stresses, and strains in the form 

i.e. in functions of the coordinate z we approximate the displacements, 

stresses, and strains by mean forms, while the functions ua (i) , w( ;), 

u;:,, Enn( i 1’ whi’ch depend on the coordinates p, we determine from 

Equations (1.4). As will be seen subsequently, the arbitrariness intro- 

duced by the relations (1.5) reduces to the arbitrariness corresponding 

to the specification of the law df variation of the displacements across 

the thickness. 

2. Limiting the investigation to plates, we obtain from Equation 

(1.4): 

Equations of equilibrium 
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-h 

-h 

-h 

Efasticity relationship 

6ff) = A ikmn 
‘mn(j) 

Strain-d~sp~ace~e~t dependence 

243 aPW =V~“p(i)+V@ubl(i) l 2%j(j)I=:Vizw(j)+ ~+i)ua(j+l.) 

%3 (0) = %f ’ %s crb = 2U’r*, I %Y f‘zl. %? faf 

Intrinsic static conditions 

(2.4) 

Intrinsic geometric boundary conditions 
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$3, 

2h” +l 
n + 1 + % u~~~v,z" dz 

-h 

2h”+’ an+3 
h 

qo, n + i + % n+3 u&#‘dz 
-h 

u~~~vaznS1 dz 

-h 

ub 
2hn+3 
n + 3 + % q*‘cicL? n+r dz 

-h 

2hnf1 2hnf3 
h 

YO) n + i t 1u@9 nf3 = s 
w&’ dz 

-.h 
It 

2hJ .’ 
%) 3 = s 

wtcj zdc (n = 0, 2) 

-h 

Here v = vapa, 7 = -rapa are interior unit normals to the bounding sur- 
face 1 and tangents to the line C, oriented so that the triplet of 

(2.5) 

vectors T. v, n forms a right-handed triad; o,(...) is the symbol for co- 
variant differentiation with respect to the metric u 

CIP’ 
In addition, we 

have introduced a simplification into Equation (2.1) that corresponds to 
neglecting, compared to unity, the squares of the derivatives of the 
thickness along the coordinates of the middle surface. Since the plate 
is symmetrically constructed, the problem of determining its state of 
stress decomposes into a bending problem and a problem of determining 
the contraction of the thickness. As is easily seen, the order of the 
differential equations (2.1) corresponds to the number of boundary condi- 
tions (2.4) or (2.5). 

3. Consider a circular isotropic plate of radius r under symmetric 
bending. Assuming x1 = r), 0 < ‘1 < 1 (p = qr is the distance from an arbi- 
trary point to the axis of the plate) and assuming that the thickness 
varies only along the radius, we obtain 

dW(i) 2e,, (i)= q + (i + 1) r8u~i+l) (3.1) 
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The equations of bending take on the form 

(3.3) 

The equations of contraction of the plate take on the form 
2~“‘t-1 

{x-gp 

; 2hn+3 .2 -2~ d 1 d -___ 
n -+ 3 (1 - f&t) rx dq q dq 
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The method of formulating refined theories of plates and shells that 

has been presented is characterized by a transparency that allows one to 
obtain the equations of the problem without unnecessary contrivances. 
However, it must be remarked that Equations (2.1) or their simpler version 
Equations (3.3) to (3.6) can be solved only by means of modern computers. 
For this the method of finite differences may be used. In addition, the 
variational equations (1.4) allow the possibility of finding the state of 
stress in plates and shells in which boundary conditions that vary with 
thickness are specified on the bounding cross sections. For example, a 
thick circular plate may bc rigidly clamped on the segment - h < z< 5 

of the bounding cross section and free of loads on the segment c< z <h 

(- h< 5< h). 

The puestion of the corrections that are introduced at the expense of 
refinements in the equations of equilibrium and boundary conditions is 
discussed in 161. 
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